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Abstract
A recently developed method for the calculation of Lyapunov exponents of dynam-
icel systems is described. The method is applicable whenever the linearized dynamics
is Hamiltonian. By utilizing the exponential representation of symplectic matrices,
this approach avoids the renormalization and reorthogonalization procedures neces-
sary in usual techniques. [i is also easily extendible to damped systerrs. The mechod
is illustrated by considering two examples of physical iaterest: a model system that

describes the beam halo in charged particle beams and the driven van der Pol oscil-
lator.
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1 Introcduction

Chaotic dynamical systems exhibit exponential divergence of initially nearby trajecto-
ries. This divergence is quantified by the Lyapunov exponents of the system which are
obtained from linearizing the dynamics around a fiducial trajectory [1]. Over the past
two decades or so there has been “intense activity” [2] directed towazd the compu-
tation of these exponents resulting in severa! differcnt numerical approaches 11112](4].
The two obvious difficulties associated with the computation of Lyapunov exponents
are: (1) exponential growth of the separation vector (between the fiducial and nearby
trajectories) and (2) the exponential collapse of initially orthogonal separation vectors
onto the direction of maximal growth. Most conventional methods overcome these
hurdles by intermittent numerical rescaling and reorthogonalization (through, e.g.,
the Gramm-Schmidt procedure [3]). Many chaotic systems are Hamiltonian or they
can be ‘ransformed into a Hamiltonian system by suitable manipulations. However,
none of the above general methods are designed to take advantage of this fact.

As is well known, the dynamics of classical Hamiltonian systems has an underly-
ing symplectic structure [5]. In recent years symplectic methods have been applied
with great success to classicel dynamical problems. The field of accelerator dynamics
has been revolutionized by the introduction of nonlinear symplectic maps as repre-
sented by Lie transformations [6](7]. Very long time integration of charged particle
and planetary systems has been aided by the development of high order symplectic
integration algorithms [8]). Recently a symplectic map-based approach for the calcu-
lation of Lyapunov exponents has been developed [9]. As shown below, this approach
obviates analytically the reed for rescaling and reorthogonalization in the numerical
computation of the exponents.

2 The Method

Consider a 2-m dimendional continuous-time dynamical system governed by the equa-
tions

dz
= = F(a,1) (1)
where z = (21,23, - ,2am) and similarly for F. Let z, denote some given fiducial

trajectory. Define deviations from this trajectury by letting Z = z — 2, and linearize
the above equations. The new szt of equations for the deviation variables is
dZ
]? = DF(Zo,t) - Z. (2)
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The approach described below can be used whenever this linearized set of equations
is derivable from a Hamiltonian. From now on suppose that this is the case, and that

one can write Z = (91,92, **, gm, P1,P2, " * ', Pm), Where ¢; and p; denote canonically
conjugate coordinates and momenta, respectively. It follows that
dZ

= -{6.2}, 3)

where {,} denotes the Poisson bracket, and where H is a homogeneous quadratic

polynomial in the ¢; and p;. A system such as this is governed by a symplectic matrix
M that maps the initial variables Z*™ into time-evolved variables Z(t),

Z(t) = M(t)Z™. (4)

Let A be given by
L faam\1/2t
A= Jim (081)"™, ()
where M denotes the matrix transpose of M. The Lyapunov exponents then equal
the logarithm of the eigenvalues of A [i].

It is easy to show that M satisfies the equation of motion (See, for example, Ref.

[11])

dM
e JSM, (6)
where S denotes the symmetric matrix given by
1 m
H(Z,t) = 3 Z 5i2:Z;, )

i'j=1

and where

0 1
J=(_10). (8)

Here 1 denotes the m x m identity matrix. It follows that the evolution of MM is
governed by the equation

%MM =JSMM — MMSJ. (9)

Standard methods for obtaining the Lyapunov exponents deal with M, which is not
real symmetric (hence the need for reorthogonalization) and which has exponentially
growing elements. To avoid these difficulties one exploits the fact that M is symplectic
by making use of the exponential representation of symplectic matrices [6]: Any
symplectic matrix M can be written in the form

M = e’5¢’5 (10)
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where S, is a symmetric matrix that anticommutes with J and S, is another sym-
metric matrix that commutes with J. It is important to note that the second matrix
on the right hand side of (10) is in fact unitary. so that

MM = e¥%. (11)

Note that this matrix has fewer degrees of freedom than M and its eigenvectors are
orthogonal. Rather than attempting to directly integrate £qn. (9) which would still
have a "arge numbers problem, focus attention instead on the exponent JS, in Eqn.
(10). It is clear that now there is no lerge numbers problem siace J S, already appears
as an exponent.

To procecr further, one obvious approach is to use an explicit representation of
exp(JS,). Such a representation is well known for Sp(Z) and has r=cently been found
for Sp(4) (see the Appendix). Generalizations to Sp(2m) are in progress [10]. To
illustrate the method it is convenient to restrict attention to systems with a two-
dimensional phase space. When driven, these represent the simplest continuous-time
systems that can exhibit chaos. The most general two-dimensional symplectic matrix
can be written in the form

M — e]s.e-]s=

— ep(B; cosa+B; lina)ebB;, (12\'

where a, b and u are real cocfficients and where the B; are basis elements of the Lie
algebra sp(2) [6]:

0 1 0 1 1 0
B‘=(—1 o)’ B’=(1 0)’ B":(o -1)' (13)

It follows that

MM = e!u(B,cona+B; nina)_ (14)
Thus, one obtains,
A = llm e(p/l)(Bgcoﬂ¢I+Ba Iind)‘ (15)
t—+o0

Finally, it is easily shown that the eigenvalues of this matrix are e¥#/t. The Lyapunov
exponents are then equal to +u/t in the limit ¢ — oo. With this convenient choice

of variables, the explicit representation of MM is given by

MK = cosh2u + s.inasinh 2u cosasi‘nh 2;.4 . (16)
cosasinh 2u cosh 2y — sinasinh 2

The unknown yuantities ¢ and . can grow in time at most as O(t). Differential

equations for these quantities can be obtained by returning to Eqn. (9), the dynamical

equation for M M.



For simplicity, assume that H contains no term proportional to gp, so that the

LIR] 0
- (n2) -

After some manipulation, Eqns. (7)-(9) lead to the foll.wing:

matrix S in (7) is of the form

d 1

d_‘t‘ = 5 (322 - .!n)COB a,

da )

T - 811 + %22 — (922 — 811)sinacoth p. (18)

From the initia! condition M(0) = I, if one chooses p(0) = 0, then cos? a(0) = 1, i.e.,
a(0) = O or -r. These differential equations form the basis of the method for calculating
the Lyapunov exponents of Hamiltonian systems: They are stepped forward in tim»
numerically till some desired convergence for the exponents, +u/t, is achieved. It will

be shown later how to apply the method to certain non-Hamiltonian systems.

3 Applications: Two Examples

As a first concrete example, consider the newly developed “core-halo” model which
describes beam halo in misraatched charged particle beams [12]. The transverse
equation of motion for a halo particle in this model, assuming constant external
focusing, is

E+z—\1-1")f(z,7(t)) =0 (19)

where z is the position variable for a halo particle, f(z,7(t)) is the force due to the
space charge of the beam: core, and r(t) is the time dep2ndent rms radius of the core.
The core radius is assumed to follow the envelope equation

a2 2
ek M. S} (20)

r+r—
r r3

Here units have been chosen so that the time independent solution of (20) (i.e, a
matched beam) is given by r = 1. In these urits = 0 corresponds to the space charge

dominated regime, while n = 1 corresponds to the emittance dominated regime. Now

assume

T
f(zlr) = m

which has the correct asymptotic behavior: the force is linear when z « r, and it is

inversely proportional to z when z » r. The Eqns. (19) and (20) describe a driven

nonlinear system with a mixed phase space as demonstrated by the stroboscopic

5
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Figure 1: Stroboscopic plut of ike chaotic sea in the core-halo model. Smuapshots were
taken at successive beam minima for 32 test particles. Parameter values were r(G) = 0.6,
#(0)= 0, and n = 0.2.
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Figure 2: Positive Lyapunov exponent for the core-halo model in a typical run. Parameters
are the same as in Fig. 1. The simulation was run for 10® periods of the driving force
using 100 integrztion steps per period for Eqns. (18) with a third-order Runge-Kutta
algorithm. The envelope equation and the fiducial trajectory were integrated with a fourta-

order symplectic algorithm using 200 steps per period.

6



plot shown in Fig. 1. The presence of a chaotic band is ‘mportant because particles
initially in the core can leak through the broken separatrix and be carried to large am-
plitudes. The piesence of such large amplitu le particles can cause unacceptably high
radioactivation levels in high intensity linacs planred for future accelerator-driven
technologies [13]. Leakage through the separatrix can be enhanced through particle
collisions and recent work has shown that this rate is controlled by the Lyapunov ex-
ponent [14]. The Lyapunov exponent for this system may be computed by integrating
(18) with

1 2z2
= 1-(1-7¢ - 0
311 1 ( 1’ ) (zg _+_ r’ (33 + rz)z)

323 = 1 (22)

where z; denotes the fiducial trajectory. Fig. 2 displays the result for the Lyapunov
exponent against time. The elow convergence of the exponent to its asymptotic value
is typical of Hamiltonian systems.

So far only explicitly Hamiltonian systems were considered. However, the only
real requircment for using the method is that the linearized deviation equations in
some variables be Hamiltonian. This allows for the inclusion of dar~ped systems in

the scheme. As an example, consider the following general driven nonlinear oscillator
Z+A (1 - e:c’) z + V'(z) = acos(wt). (23)

By appropriate choices of A, ¢, aad V(z), this reduces to an assortment of well-
known equations including van der Pol /A < 0, ¢ = 1, V(z) = (1/2)z?), Duffing
(A>0,e=0, V(z) = az? + Az*), and the damped driven pendulum (A > 0, € = 0,
V(z) = 1 — cos(z)). In terms of the deviation variable §, the linearization of (23)
yields

5+ A (1 - ezg\) § + (V"(0) — 2eAzo20) 8 = 0 (24)
where z, represents the fiducial trajectory. Introducing vhe new variable A defined
througa

A = §e9(0) (25)
where
§= _1 (1- ez3) (26)
2
Eqn. (24) reduces to that deccribing an undamped oscillator with time dependent
frequency,
A+ (V"(::.,) — €AzoZg — %1\’ (1 - ez(’,)z) A=0. (27)
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It is now straightforward to proceed in the usual way: tor linear damping /e = 0) the
Lyznunov exponents x; of thir system are given by

1 .1
Xt = —E)' + lim ?Fo(t) (28)
where y follows from solving (18) for the system defined by (27). When € # 0,

xs = Jim = (9(8) £ () (29)

modulo terms that are exponentially suppressed at late times.

Figs. 3(a) and 3(b) show the Lyapnov exponents of the van der Pol system. For
the chosen set of parameters tliese resulis are in agreement with those of Ref. [4]. In
contrast with the results shown in Fig. 2, the convergence of the exponents is much
faster, as is typical of non-weakly damped systems.

4 Conclusion

To summarize, a method for computing Lyapunov exponents that exploits the un-
derlying symplectic structure of Hamiltonian dynamics has beer reviewed. Just as
symplectic integrators are not a panacea for all time integration problems, this method
does not have universal applicability and advantages. However, when applicable, the
method has certain advantages over standard techniques, most importantly the lack

of systematic errors associated with intermittent reorthogonalization and rescaling.
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Figure 3: (a)Positive Lyapunov exponent for the van der Pol oscillator with parameters
A = —5,a =5, and w = 2.466 (taken from Ref. [4]). The simulation was run for 10% periods
of the driving force using 100 million time steps for Eqns. (18) and 200 million time steps
for the fiducial trajectory. The integrators were third-order Runge-Kutta and fourth-order
symplectic, respectively.

R W e
6 BSL E
-6.88 E
6.9 A e . -
Q 5C000 100000 . 120900Q 200C00

Figure 3: (b)Negative Lyapunov exponent for the van der Pol oscillator with the same
parameters as in Fig. 3(a).
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A Appendix: Summary of Sp(4) Results

There exists a particularly convenient way of organizing the basis elements of sp(4)
in terms of a triplet of matrices (the F,, G;, and the B;) eacn triplet consisting in
turn of three matrices. The B, belong to te unitary sector which is irrelevant to the
computation of the Lyapunov exponents. The most general (4 x 4) symplectic matrix
then turns out to be of the form exp(a: F + b - G) times a unitary matrix, where

a = {a1|a2,a3}) b={b‘l)b2:b3}
F = {F1,F3,F3}, G={G1,G2,G3}- (30)

Here, the a; and the b; are scalars, and the explicit forms of the matrices F; and G;
are given below.

It turns out to be possible to resum the formal exponential above and to obtain
the following result [10j:

M = exp(a-F+b-G)
= %(cosh[u,] + cosh[uy])I
+%(sch[u,] +schiuy))(a-F+b-G)
+G:—i@(cosh[u,] — cosh[u,]) (a x b) - K
+G—z—i—$-)-(sch[u,] _ uchfu,])([b x (a x b)] - F + [a x (b x a)] - G) (31)
where “” represents the usual vector dot product, “x” represents the vector cross

product, I is the (4 x 4) identity matrix and

sch(z] = sinh(z]/z,

u: = V2?4 4v,
u, = V27 —4v,
s> = a:a+b:b,
v’ = (axb)-(axh). (32)

A new triplet of matrices, the K; appears. This is because the F; and the G; do not
form a closed subalgebra. The K, are idempotent and unitary. Note that all the F;,
G: and K; are traceless. Thus, quite trivially, Tr(M) = 2(cosh{u,] + cosh{u]) and
the eigenvalues of M are explu.], exp[—u.), exp[u,], exp[—yu,].
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Finally, the explicit forms of the above matrices are given by:

0
Kl = 0
0

0

-1

1‘71 = 0

-1
0
-1

G, =

' 0

o O -~ O

-0 = O

- 0 O O

O -~ O =

1K2=

|F2=

102

O = O =

12

0 0 O
0 0
0 1K3=
-1 0 1
0 -1 0
0 1 0
-1 0 1
lF3 -
0 -1 0
1 0 -1
0 -1 0
1 0 -1
163—
0 -1 0
1 \ 0 -1

o © = O
o



